Nonlinear dynamics of direction-selective recurrent neural media.
نویسندگان
چکیده
The direction selectivity of cortical neurons can be accounted for by asymmetric lateral connections. Such lateral connectivity leads to a network dynamics with characteristic properties that can be exploited for distinguishing in neurophysiological experiments this mechanism for direction selectivity from other possible mechanisms. We present a mathematical analysis for a class of direction-selective neural models with asymmetric lateral connections. Contrasting with earlier theoretical studies that have analyzed approximations of the network dynamics by neglecting nonlinearities using methods from linear systems theory, we study the network dynamics with nonlinearity taken into consideration. We show that asymmetrically coupled networks can stabilize stimulus-locked traveling pulse solutions that are appropriate for the modeling of the responses of direction-selective neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the stability of these solutions breaks down, giving rise to lurching activity waves with specific spatiotemporal periodicity. These solutions, and the bifurcation by which they arise, cannot be easily accounted for by classical models for direction selectivity.
منابع مشابه
Learning visual motion in recurrent neural networks
We present a dynamic nonlinear generative model for visual motion based on a latent representation of binary-gated Gaussian variables. Trained on sequences of images, the model learns to represent different movement directions in different variables. We use an online approximate inference scheme that can be mapped to the dynamics of networks of neurons. Probed with drifting grating stimuli and ...
متن کاملExact solution of the nonlinear dynamics of recurrent neural mechanisms for direction selectivity
Di erent theoretical models have tried to investigate the feasibility of recurrent neural mechanisms for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has been restricted so far to the case of purely linear networks. We present an exact analytical solution of the nonlinear dynamics of a class of direction selective recurrent neural models with th...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملComputational design and nonlinear dynamics of recurrent network models of the primary visual cortex
The recurrent neural interaction in the primary visual cortex makes its outputs complex nonlinear functions of its inputs. This nonlinear transform serves the role of pre-attentive visual segmentation, i.e., the autonomous transformation from visual inputs to processed outputs that selectively emphasize certain features (e.g., pop-out features) for segmentation. Understanding the nonlinear dyna...
متن کاملBiologically plausible learning in recurrent neural networks for flexible cognitive tasks
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Recurrent neural networks operating in the near-chaotic regime, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2002